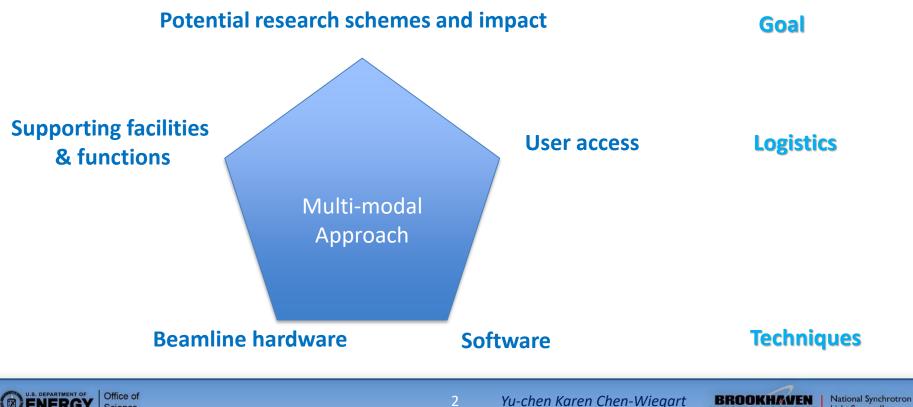
<u>Multi-modal Issue Task Force</u> <u>March 1, 2017</u> <u>UEC Town Hall Meeting</u>

Yu-chen Karen Chen-Wiegart, Yong Chu, Eric Dooryhee, Klaus Attenkofer, Lisa Miller, Iradwikanari Waluyo, Daniel Allan, Lin Yang, Wah-Keat Lee, Randy Smith, Stuart Campbell



Charter & Role

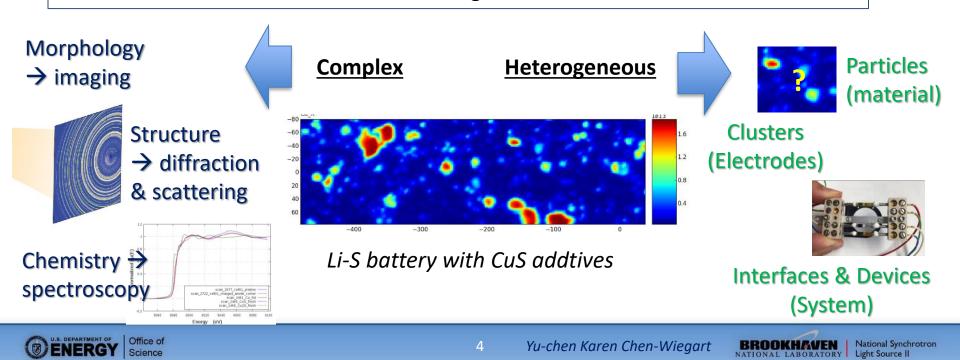
Science

The Multi-Modal Issues Task Force (MMITF) is established to identify the issues involved in utilizing techniques across multiple beamlines at NSLS-II, and in combining synchrotron techniques with other techniques, such as the electron-based imaging methods at CFN. The task force shall not aim to fully resolve the issues, but rather to **clearly identify them**, assign priorities to addressing them and provide suggested paths forward in each case.

NATIONAL LABORATORY | Light Source II

Task force members

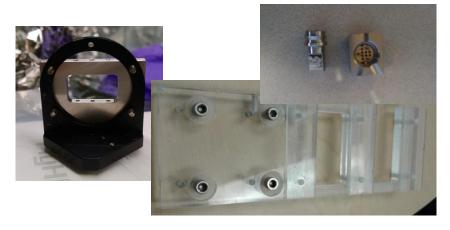
Member	
Karen Chen-Wiegart	Chair - under joint appointment, with Mat Sci & Chem. Eng, SBU
Yong Chu	Lead Scientist, Hard X-ray Nanoprobe beamline
Eric Dooryhee	Program Manager, Diffraction & In Situ Scattering Lead Scientist, X-Ray Atomic Pair Distribution Function & X-Ray Powder Diffraction
Klaus Attenkofer	Program Manager, Hard X-Ray Spectroscopy 8-ID Lead Scientist, Inner Shell Spectroscopy
Lisa Miller	Program Manager, Imaging & Microscopy Users program; Users Issues Task Force Chair
Iradwikanari Waluyo	Lead Scientist, Soft X-ray Spectroscopy & Polarization
Daniel Allan	Assistant Computational Scientist, Data Acquisition, Management and Analysis
Lin Yang	Lead Scientist, Life Science X-ray Scattering
Wah-Keat Lee	Lead Scientist, Full-Field X-ray Imaging
Randy Smith	Laboratory Space Manager; Science Associate
Stuart Campbell	Group Leader, Data Acquisition, Management and Analysis



Responsibilities

1. Potential research schemes and impact: to identify scientific cases and communities in which techniques and beamlines may be usefully combined and the impact of doing so.

1) Complex systems: science cases require combining different interaction mechanisms to fully understand the systems.


2) Hierarchical, heterogeneous structure: science cases require a particular interaction mechanism but at different length scales.

Responsibilities (con't)

Type of multi-modal measurements

1) Static samples: the exact same samples need to be measured across different beamlines without physical changes: simple and fast sample registration between beamlines and laboratory techniques is critical.

2) In operando/In situ experiments: in situ cells need to be compatible across different beamlines in order to create the same operando conditions. The development of software that provides the ability to align and analyze operando data measured from different beamlines and techniques is required.

Responsibilities (con't)

Identify the issues required for an effective multimodal program in:

Beamline hardware:

- Identify sample • mounting/geometry requirements
- standard form factor sample cells ٠
- sample environment control ٠
- common equipment and stages ٠

Software:

- Data acquisition
- **Data Registration**
- **Data Analysis**
- Data Visualization
- Data Access
- Data Modeling

User access

- Proposal submission and review
- Beamtime allocation
- Cross-facility proposal system & ٠ time allocation

Supporting facilities and functions:

- Support lab access
- User training/education/outreach



Resources & Reporting

- The MMITF is assigned no special resources, but has the authority to provide recommendations to the NSLS-II Division Directors and NSLS-II Director on funding projects and requests, as needed. The NSLS-II Facility Director has final decision and approval authority on resource allocations.
- A written report is due every half a year (Jan and June)

Conduct of the task force: Launched October 26, 2016

Date	Торіс	Action Items
01-10/28/2016	Strategic Report Write-up Kick-off	Individuals assigned sections
02 - 11/04/2016	Strategic Report 2 nd Iteration	Individuals will review draft Hardware survey: Randy Smith Software survey: Dan Allan
03 – 12/05/2016	Hardware Needs – I User Access - I	Continue Hardware survey (8 out of 18 operational BLs done)
04 - 12/12/2016	Software Needs - I User Access – II	Continue Software survey (12 out of 18 operational BLs done)
05 - 01/25/2017	SPMC* presentation draft	\rightarrow Update by April
06 - 02/15/2017	SPMC presentation feedback	Address SPMC discussions

8

Mechanisms of documentations:

Strategic Plan: all contributed to the write-up

• All meetings are documented on SharePoint: Attendees, Agenda, Presentation Slides (including discussion notes)

*Science Programs Management Committee

Beamline Survey Status – Hardware & Software

Beamline	Hardware	Software	Program	Hardware	Softw	vare
	(() = 1	Hard X-Ray Spectroscopy (6) – Eric	(3)	(3)	
Operational/Comissioning Beamlines (18)	(8)	(12)	Soft X-Ray Scattering & Spectroscopy (5) –			
3-IDHard X-ray Nanoprobe(HXN)	v	v		(0)	(3)	
I-IDIntegrated In-situ and Resonant Hard X-ray Studies(ISR)				(4)	(4)	
-IDSubmicron Resolution X-ray Spectroscopy(SRX)	v	V		(2)	(3)	
B-BMTender Energy X-ray Absorption Spectroscopy(TES)	v	v		(1)	(1)	
3-IDInner-Shell Spectroscopy(ISS)	v	v	Diffraction & In Situ Scattering (4) – Jianming	(1)	(1)	
IO-IDInelastic X-ray Scattering(IXS)				licour	-i	-
1-BMComplex Materials Scattering(CMS)	v	v	 Lead on survey/c 	iiscus	SIO	115
11-IDCoherent Hard X-ray Scattering(CHX)	v	v	Hardwara, Bandy Sr	mith		
.2-IDSoft Matter Interfaces(SMI)		v	Hardware: Randy Sr	IIILII		
6-IDLife Science X-ray Scattering(LIX)	v	v	Software: Dan Allan	Dan Allan		
7-BMX-ray Footprinting for In Vitro and In Vivo Structural Studies of Biological Macromolecules(XFP)			Soltware. Dall Allall			
7-ID-1Highly Automated Macromolecular Crystallography Beamline(AMX)						
7-ID-2Frontier Microfocusing Macromolecular Crystallography(FMX)					อ	
9-IDBiological Microdiffraction Facility(NYX)					2 Z	
21-IDElectron Spectro-Microscopy(ESM)		v	Beamline		Hardware	Software
23-ID-1Coherent Soft X-ray Scattering(CSX-1)		v			lar	
23-ID-2Soft X-ray Spectroscopy and Polarization(CSX-2)		v			-	
18-ID-2 X-ray Powder Diffraction(XPD)	v	v				
Beamlines Under Development (10)	(2)	(2)	Operational/			
-IDSoft Inelastic X-ray Scattering(SIX)	(-)	(-)	Commissioning Roamli	noc	8	1
-BMX-ray Fluorescence Microprobe(XFM)	v	v	Commissioning Beamli	nes	0	-
-BMMaterials Measurement(BMM)			(18)			
-BMQuick x-ray Absorption and Scattering(QAS)			(10)			
-ID-1Spectroscopy Soft and Tender(SST-1)						
-ID-2Spectroscopy Soft and Tender(SST-2)						
8-IDFull Field X-ray Imaging(FXI)	v	V	Beamlines Under			
2-BM-1Frontier Synchrotron Infrared Spectroscopy(FIS)			Dearnines Under			
22-BM-2Magnetospectroscopy, Ellipsometry and Time-Resolved Optical Spectroscopies(MET)			Development		2	
8-ID-1Total Scattering Beamline(PDF)					-	
17-ID (HEX): High Energy X-ray Diffraction			(10)			

Hardware: focusing on sample mounting constraints & compatibility

Summarizing information in spreadsheet

& in presentation (photos, comments)

Drawings are also collected

On-going efforts by Randy Smith

	beamline	station/mode	beam size/res	techniques	typical sample mounting	limitations	working distance from beam focus	compatable substrates/ windows	energy range	likely multimodal	mapping stage Mapping sofware
_	02-ID SIX			soft inelastic x-ray scattering	.1						
				hard X-ray Flourescence,	2D:custom mount only ("diving board"), 3D:	in-vacuum, no					
в	03-ID HXN	MLL	20nm	diffraction	custom tomo mount	working distance	mm		6-25KeV		yes, yes
						small working					
					2D: 2"x2" flat mount 45 deg tilt, tomo:	distance- 60mm		ultralene,		TES, SRX, HXN (BMM,	
в	04-BM XFM	main	1-2 micron	hard X-ray Flourescence, XANES	Huber goniometer (2" tall + pin)	upstream	upstream: 60mm	kapton,	2-23KeV	QAS, & ISS for bulk)	yes, yes
	04-ID ISR		2x20 microns	scattering and diffraction							
				_		~ 5 - 10 mm working					
				hard X-ray Flourescence, point	1" diameter magnetic mount typicall 15	distance to in-line	upstream, 5-10 mm				
в	05-ID SRX	high flux	< micron	XANES	deg(?) tilt, w/ different attaching plates	optical microscope	w/ in-line microscope		4.7-25KeV		
		-	10 micron to			He atmosphere,				XFM, SRX, HXN (BMM,	
в	08-BM TES	main	1mm	tender X-ray Flourescence	2"x2" flat mount, 45 deg tilt	ultralene substrate			1-8KeV	QAS, & ISS for bulk)	yes, yes
								Kapton,			
		soccerball	1mm^2 or 20-		10 sample chages w/ electrical and gas feed	must be mounted on		other			
в	08-ID ISS	station	25um	XAFS, XANES, X-ray Flourescence	through	stanard mount		polymers	2.5-36KeV		
								Kapton,			
			1mm^2 up to		translation stage w/ lots of flexibility.			other			
в	08-ID ISS	standard XAFS	3x60mm	XAFS, XANES, X-ray Flourescence	Typical 13mm pressed pellets		ISS	polymers	2.5-36KeV		
	10-ID IXS		5x7 microns	Inelastic Scattering							
			200x200		1. cabilary 1mm glass or quartz 2. G.I- thin		centimeters	Kapton (8		1. CHX, LIX, SMI 2.	
			microns typical		film 1x1cm x10 samples (1" thorlabs mount,		(upstream and	or 25		Spectroscopy & imaging	
в	11-BM CMS	main	(min 20x20 um)	SAXS/WAXS	vacuum compatable)		downstream)	microns)	10-17KeV	beamlines	yes, ?
					1. capilaries (10 um wall) & flow cells						
				SAXS/WAXS, Correlated	2.custom for wafers, gels, (transmission &						
в	11-ID CHX		3 & 10 microns	Spectroscopy	reflection geomatery)				6-16KeV	1. CMS, 2. SMI	yes, ?
В	12-ID SMI		2.5x25micron	GI SAXS/WAXS							
						microprope: "5mm				crystalography	
					1. solutions (200-30uL in 200uL PCR tube)	tall, 10-100 microns				beamlines, microprobe	
			1 to 500	SAXS/WAXS (solution and	flow cell and non-flow cell 2. thin sample	thick. Solution:30-	upstream ~30mm			imaging techniques,	
	16-ID LiX	main	microns	microprobe)	3D mapping	200uL	downstream ~ 3 mm		2-18 KeV	solution XAS	yes, ?
۶	► beamline	vs spot size / Sh	ieet3 🦯 😏 🦯			I 4					

LiX - SAX/WAX (2-18KeV)

Two sample types/ beamline modes:

- 1. Solutions Flow cell: 200-30uL in PCR tube
 - No-flow cell
 - HPLC effluents
- 2. 2D samples: microprobe setup
 - 1um beam
 - Mapping stage, ~5mm flat samples
 - Visible light microscope (10x)

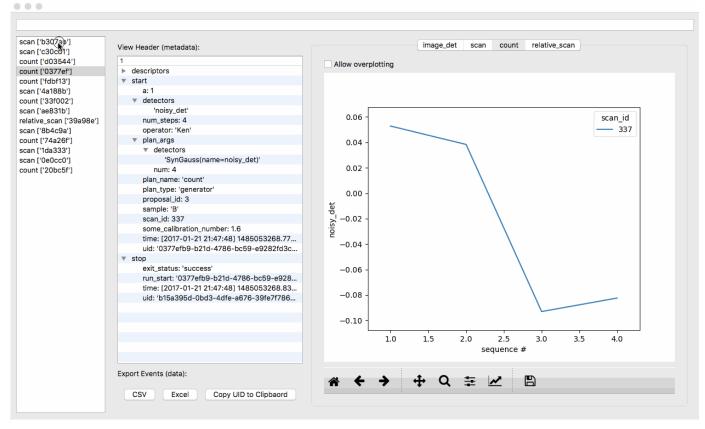
Constraints (microprobe):

- ~5mm sample or smaller
- upstream working distance 33mm (lens)
- downstream working distance 3mm (scatter cone)

Likely multimodal partners:

- Crystallography beamline (AMX, FMX, NYX)studying particular protein or molecule
- All modes of imaging/microprobes (SRX, TES, XFM, IR microscopy, lab-based microscope)

Yu-chen Karen Chen-Wiegart



National Synchrotron

Software: synergy with other beamlines - Two Modes of Sharing

- 1. Sharing actual samples and data
- 2. Sharing some common data acquisition and analysis code

Example: data viewer compatible across beamlines – in development by Dan Allan

On-going efforts by Dan Allan

Recommendations

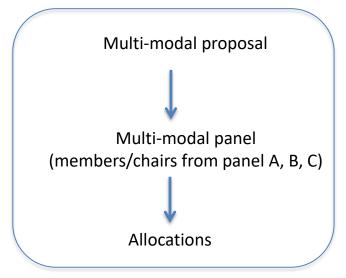
1. Proposed pilot programs directions

A. Establishing end-to-end beamline hardware & software in multimodal mode

- I. Registration across beamlines: imaging beamlines
- II. Sample mounting & data sharing between high throughput to specialized beamlines

B. Science driven complex multi-modal characterization and analysis

- batteries: Li-S battery, with SRX, ISS, XPD \rightarrow TES, HXN \rightarrow TEM (CFN) •
- catalysis, corrosion, bio-fuels, others



Recommendation (con't)

2. Multi-beamline proposal (still in discussions)

- Proposal submission, review and allocation mechanism are in discussions
- Guidelines for PASS developer
- Identifying scientific opportunities from users community

	1. Streamline the process better to encourage/facilitate experiments take
Goals	advantage of multi-modal approach to enhance the research
	2. It has to be EASIER for the USERS

*Common scientific section (project) individual sections for each beamline request

*proposal needs to specify \rightarrow allocation

- 1. Dependency between techniques A, B & C
- 2. Required order (if any) for techniques A, B & C

Task force looking forward

- Continue to address:
- Establishing end-to-end beamline hardware & software in multi-modal mode → start planning & aim to conducting pilot experiment(s) in 2nd & 3rd cycle of 2017
- Exploring science driven complex multi-modal characterization and analysis, starting to engage partners/collaborators → started on Li-S battery, seeking partnership for other areas
- Continuing discussions on multi-modal proposal mode
 → aim to have trial proposal for the fall cycle with details currently in discussions
- Look for feedbacks & engagement from beamline staff, groups - mechanical engineering, control engineering, DAMA, and potential partners/collaborators/users

Looking for feedbacks from UEC

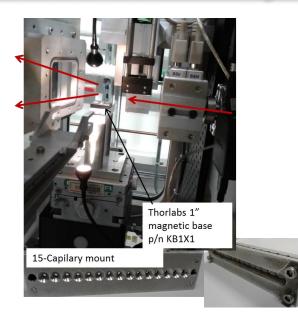
- Scientific ideas/opportunities that would benefit from a multimodal approach?
- What beamline hardware, software & supporting functions are essential to optimize the outcome when doing multi-modal experiments?
- How do you envision planning a multi-modal experiment? (Having) multiple techniques sequentially or in parallel? Having one main technique with other short/supportive beamtime or multiple beamtime with similar importance?)
- Specifically in the contents of pilot programs looking for suggestions on samples ideal for multi-modal imaging

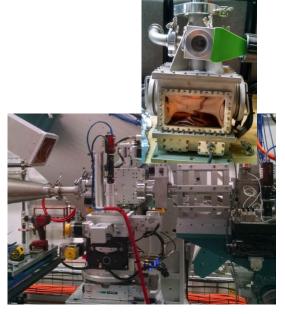
ycchen@bnl.gov \rightarrow also feel free to contact any of us:

Yu-chen Karen Chen-Wiegart, Yong Chu, Eric Dooryhee, Klaus Attenkofer, Lisa Miller, Iradwikanari Waluyo, Daniel Allan, Lin Yang, Wah-Keat Lee, Randy Smith, Stuart Campbell

National Synchrotron

BRUOKHAVEN

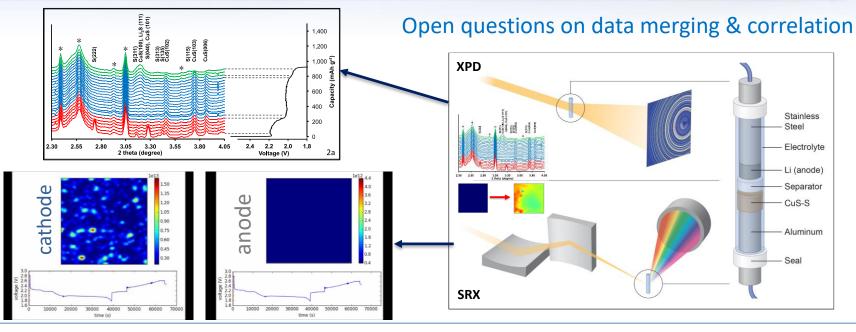

Additional Information



Pilot programs: A Establishing end-to-end beamline hardware & software in multi-modal mode 2. Sample mounting & data sharing between high throughput to specialized beamlines: scattering beamlines (start from CMS \rightarrow CHX)

CMS High throughput

CHX Specialized (dynamic)


National Synchrotron

BROOKHAVEN

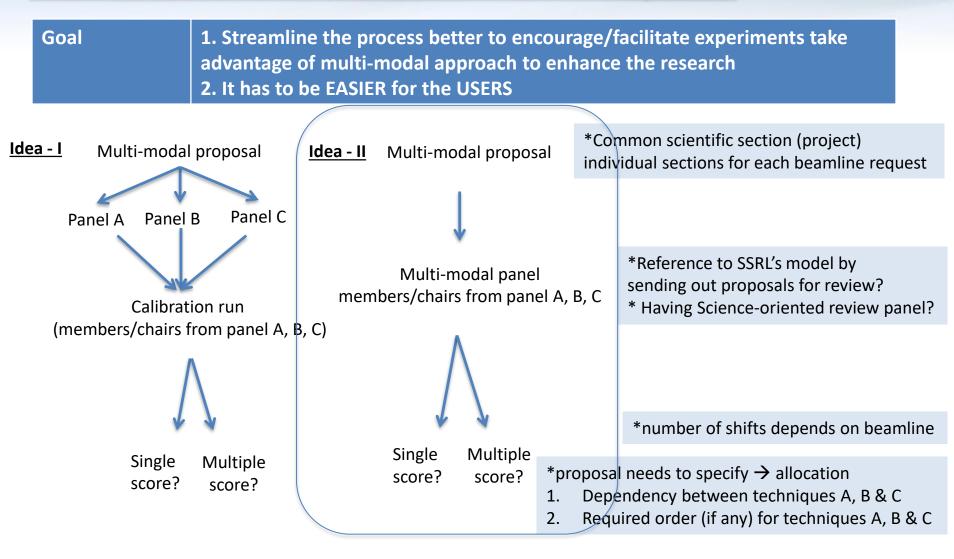
NATIONAL LABORATORY | Light Source II

- 1. Hardware: compatible sample mount from CMS to CHX
- Software: being able access *processed data* of CMS at CHX (check consistency between CMS and static data collected at CHX), consistent SAXS data analysis package, sample tracking/meta data policy

Pilot programs: B. Science driven complex multi-modal characterization and analysis - 1. batteries: Li-S battery

Purpose of Multi-modal Synchrotron Characterizations:

XRF mapping for elemental distribution evolution (SRX) – 2016-2
X-ray diffraction for structure and phase-identification (XPD) – 2016-3, 2017 Feb
Hard x-ray spectroscopy for oxidation states and structures on metals (ISS) - 2017 March
Tender x-ray spectroscopy for sulfur species - 2017 April
Nano-tomography and spectroscopic imaging for morphological and chemical evolution (HXN, FXI)
Small angle scattering for longer range structural information (CMS, LiX)
Local morphological and structural evolution with high resolution (CFN – in situ TEM)



National Synchrotron

BROOKHAVEN

NATIONAL LABORATORY Light Source II

Discussions on Multi-beamline Proposal

Office of Science

Yu-chen Karen Chen-Wiegart

Issues to address

Multi-modal aspect	Hardware – sample mounting	Software
2D imaging /scanning registration	Design compatible 2D sample mount/adaptors - FXI, HXN, SRX, XFM, TES, LiX Plan and execute proof of concept experiment across imaging beamlines	Evaluate existing imaging registration utilities available in compatible environment, and apply them to the proof-of-concept experiment (FXI, HXN, SRX, XFM, TES) Configure Databroker and File system to ensure data can be viewed across beamline
Tomography	Design compatible tomography sample mount/adaptors - FXI, HXN, SRX, XFM	Continue the efforts on tomography reconstruction software -TomoPy implementation
Multi- dimensional data		 Further establish a consensus across the facility on how to provide a visualization tools for multi-dimensional arrays s sustainable with the support of DAMA group & continue the efforts At ESM, band structure cubes Scattering image time series at many beamlines XANES imaging stack and tomography series at imaging beamlines

Issues to address - con't

Multi-modal aspect	Hardware – sample mounting	Software
Scattering	Design compatible sample mount/adaptors - high through-put (CMS) vs specialized (CHX, SMI)	 Bin statistics for Power Diffraction (XPD), SAXS, WAXS, GI-SAXS, GI-WAXS (CMS, CHX, SMI, LiX): Consolidate the processing functions, and then develop a standalone GUI application XPCS (CHX, CSX-I): Enhancements – moving from Jupyter (Python Notebook) to a GUI
<i>In situ</i> sample holders	Continue on-going compatible battery efforts: SRX, XPD, ISS, potentially TES Continue on-going flow cell efforts: SRX, HXN, and TEM (CFN) Catalysis – start discussions with partners/collaborators in Chemistry department	
Multi-modal complex data		Using scientific cases (battery, catalysis), identify clear statistical analysis – correlation analysis across techniques: synergy with CSI
High throughput experiments	Start discussions about high throughput across programs/mechanisms (ISS and XPD)	Sample tracking & meta data 'default' Consistent bar-code systems (Reference: structural biology beamlines, other facilities)

21

