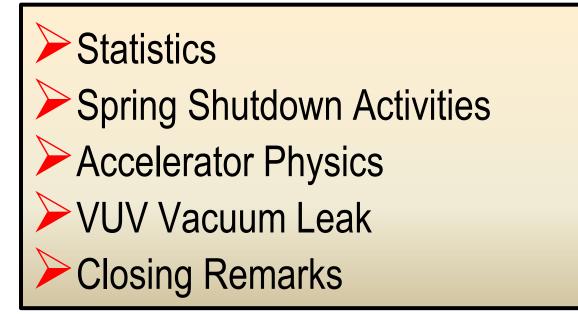
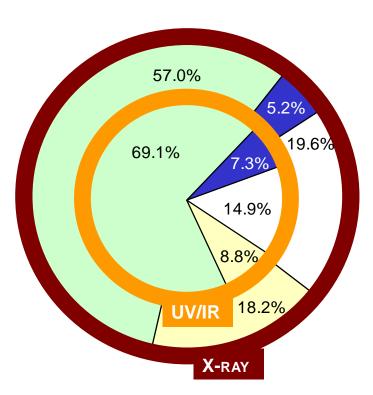
Machine Update

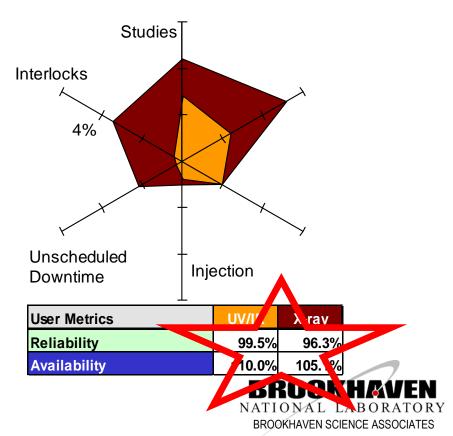
NSLS Town Meeting


Emil Zitvogel

Friday, August 12, 2011


Topics

FY2011 Statistics



Activity /Hours	UV/IR	X-ray
Operations	5039.9	4160.5
Unscheduled Operations	531.8	379.9
Maintenance	1085.0	1427.5
Other	639.3	1328.0

Other Activities	UV/IR	X-ray
Studies	2.8%	4.4%
Com/Con	2.4%	5.2%
Holiday	2.0%	2.0%
Injection	0.8%	1.0%
Unscheduled Downtime	0.3%	2.2%
Interlock	0.5%	3.5%

YTD 7296 Hrs 100 Hrs= 1.4%

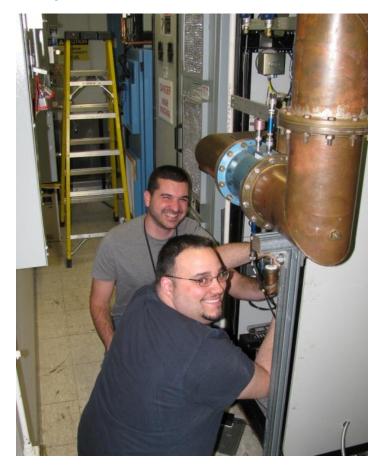
XRF 4 Solid State Amplifier Installation

- Replaces an antiquated tube amplifier.
- Allowed removal of several other components for improved reliability (100W amp, several support power supplies).
- Feeds 52 MHz RF to 125kW amplifier.

Cooling lines are added

NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Riggers remove the tube rack

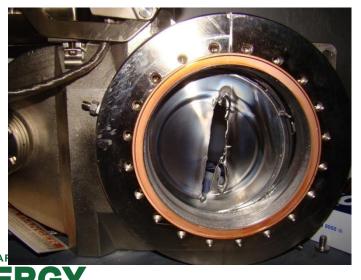


New amplifier slides into place

XRF 4 Solid State Amplifier Installation

Completing the RF connections to the 123kW amp

Preparing the circulator


В

NATIONAL LABORATORY

X16 GP Vacuum Valve Replacement

- Two failures permitted exposure of the GP value to x-rays.
- Caused significant damage to the valve.
- Equipment protection system was checked at X16 and the rest of the ring following this incident to look for other latent errors.
- Replacement required the bleed-up of SP3 to replace the valve.
- Periodic testing of all equipment protection systems will be done during maintenance and shutdown periods to identify and fix interlock problems.

X8M3 High Voltage Vacuum Feed-through

- Leak in the high voltage feed-through caused vacuum issues in SP1/8 several times.
- Spray sealant applied each time, but it was only a temporary fix.
- Active corrosion discovered on the braze joint.
- This is a known problem for which Gamma Vacuum has a solution.
- Discussing plans to inspect others at the start of shutdown periods.
- Many have become inaccessible.
- We will maintain an adequate spare stock to see us through to the end of operations.

220018 220018 220038 Corrosion Testing at Gamma Vacuum

Results are Following Weekend Salt Test

More Activities

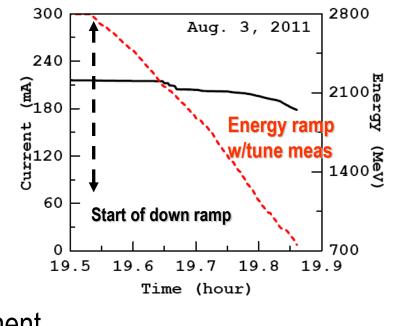
- Completion of the Proteus Water Flow Monitor System.
 - Helps us locate and repair Proteus faults quickly to minimize downtime.
 - Diagnostic information helps to identify trends in the water flow and fix them before they cause downtime.
- Linac Pulse Counter Installation.
 - An "odometer" for the klystrons.
 - Required following ATF klystron fire.

Aray Ring Virtue Verdent Verd

- XRF1 Temperature Control Valve Replacement.
 - Existing valve had partially failed but still workable.
 - New valve gives a more linear response.
 - Valves will be installed in other systems during future shutdowns.

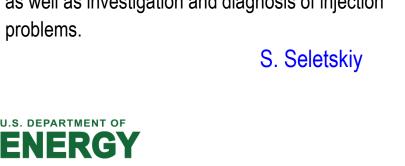
More Activities

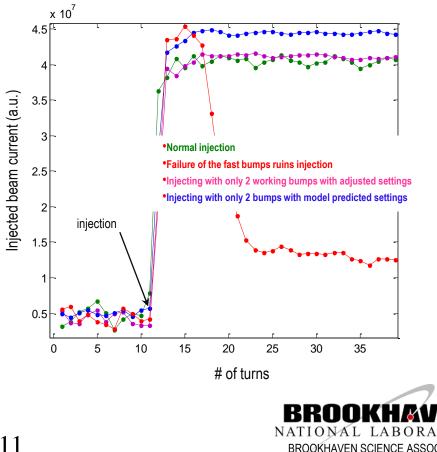
- HEPA Filter Exhaust System at X6B, X7B, X9, X14A.
- Electrical Sub-station Maintenance.
- X17 Liquefier Controls Upgrade.
- Air Handler Number 1 Work.
 - Supplies cooling to x-ray ring and power supply area.
 - Replaced temperature control valve.
 - Extended air intake to keep snow from blowing up into it and dripping onto x-ray power supplies.
 - Removed stuck exhaust dampers.



X-Ray Down Ramp

- Advantages of ramping x-ray current down:
 - Reduce radiation losses from beam dump.
 - Reduce the injector (Linac/Booster) on time, and also beam losses since injection starts at 190mA instead of 0mA.
 - Injection time may be shorter, providing a faster down-ramp.
- Successfully held 180mA out of 210mA to injection energy.
- Steps to making it operational:
 - Speed up the down ramp
 - Further reduce low energy losses with help from auto tune measurement.


Xi Yang, Y Tang, A Caracappa, S. Kramer, J. Tallent



Checking the VUV Injection Model

- The VUV injection model was checked and found to be working perfectly well, based on the turn-by turn diagnostics installed in the ring.
- The failure of one of the three fast bumps kicking the injected beam to the proper trajectory hindered the normal injection process.
- With some adjustments of the two remaining fast kickers it was possible to restore injection (with slower injection rate).
- This case was studied and verified using the VUV injection model.
- Moreover new settings optimizing "2-bump injection" were found from the model and successfully checked during the studies.
- This model will be used for injection optimization as well as investigation and diagnosis of injection problems.

U6 Water-Cooled Mask Vacuum Leak

- VUV developed a vacuum leak in the water line of the U6 water-cooled mask.
- Failure may be related to bend stress coupled with age and constant exposure to light (U6 is unused and mask stayed closed).
- Mask was replaced with a water-cooled cap.
- Recovery was slow due to the water contamination.
- We still have not returned to pre-failure conditions, but we're close.
- We have spare masks on hand and this one has been rebuilt and is a spare.

Closing Remarks

Staff response to operations problems is consistently swift, minimizing the impact to our users.

We continue to perform effective preventative maintenance to keep downtime to a minimum.

Thank you for your time.

